A Survey of Gauss-Christoffel Quadrature Formulae

نویسنده

  • Walter Gautschi
چکیده

4. 4.1. 4.1.1. 4.1.2. 4.1.3. 4.2. 4.3. Gaussian quadrature with preassigned nodes Christoffel's work and related developments Kronrod's extension of quadrature rules Gaussian quadrature with multiple nodes The quadrature formula of Turan Arbitrary multiplicities and preassigned nodes Power-orthogonal polynomials Constructive aspects and applications Further miscellaneous extensions Product-type quadrature rules Gaussian quadrature involving interval functionals Nonpolynomial Gaussian quadrature

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Gauss-Christ of fei Quadrature Formulas

Each of these rules will be called a Gauss-Christoffel quadrature formula if it has maximum degree of exactness, i.e. if (1.1) is an exact equality whenever / is a polynomial of degree 2n — 1. It is a well-known fact, due to Christoffel [3], that such quadrature formulas exist uniquely, provided the weight function w(x) is nonnegative, integrable with /* w(x)dx > 0, and such that all its moments

متن کامل

On sensitivity of Gauss-Christoffel quadrature

In numerical computations the question how much does a function change under perturbations of its arguments is of central importance. In this work, we investigate sensitivity of Gauss-Christoffel quadrature with respect to small perturbations of the distribution function. In numerical quadrature, a definite integral is approximated by a finite sum of functional values evaluated at given quadrat...

متن کامل

On Gautschi's conjecture for generalized Gauss-Radau and Gauss-Lobatto formulae

Recently, Gautschi introduced so-called generalized Gauss-Radau and Gauss-Lobatto formulae which are quadrature formulae of Gaussian type involving not only the values but also the derivatives of the function at the endpoints. In the present note we show the positivity of the corresponding weights; this positivity has been conjectured already by Gautschi. As a consequence, we establish several ...

متن کامل

Error Bounds for Gauss-kronrod Quadrature Formulae

The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...

متن کامل

A note on the Gauss-Jacobi quadrature formulae for singular integral equations of the second kind

A fast and efficient numerical method based on the Gauss-Jacobi quadrature is described that is suitable for solving Fredholm singular integral equations of the second kind that are frequently encountered in fracture and contact mechanics. Here we concentrate on the case when the unknown function is singular at both ends of the interval. Quadrature formulae involve fixed nodal points and provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012